跑得好好的Java进程,怎么突然就瘫痪了?

白色玫瑰 程序猿

时间: 2023-05-22 阅读: 1 字数:4044

{}
很多人眼中,Java虚拟机是透明的,只需知道核心api的用法,便可以专注于实现具体业务,然后依赖Java虚拟机运行甚至优化应用。你是否有过这样的经历,跑得好好的Java进程,突然就瘫痪了。过于依赖Java虚拟机导致我们...

目录

Java能成为应用最广泛的语言,和他的内存托管机制是分不开的。很多人眼中,Java虚拟机是透明的,只需知道核心api的用法,便可以专注于实现具体业务,然后依赖Java虚拟机运行甚至优化应用。

你是否有过这样的经历,跑得好好的Java进程,突然就瘫痪了。过于依赖Java虚拟机导致我们对问题无从下手,问题反复出现影响开发效率。其实,多数Java进程瘫痪的原因可以从java虚拟机层面找到原因,本文列举出导致Java进程瘫痪的一些共性原因,供大家交流和学习。

一、内存回收一直是java的痛点

用Java无法做出类似Redis这样的产品。java的内存回收机制使我们在编写代码时不需要关注对象的回收,同时加大了内存回收的消耗,标记复制需要做内存拷贝,标记清除算法则需要stop the world。所以我们在使用缓存的时候,量稍微大一些就需要借助类似Redis这样的中间件帮我们处理了。作为Javaer,我们享受了自动内存回收的安逸,同时也需要多了解下内存优化的方法。

二、为什么fgc停不下来了

1.什么情况下会gc

为了了解我们的系统为什么会不停fgc,我们需要先了解一下系统什么情况下会gc。在jvm层面,当我们new一个对象的时候,jvm会先在堆区分配对象需要的内存,这个时候如果内存不够的话,就需要gc了,gc的返回结果就是对象的空间地址。jvm会先进行ygc,也就是我们通常说的标记复制,如果ygc之后依然申请不到空间,就会进行fgc了。同理,如果fgc之后依然没有足够的空间,就会循环的进行fgc,直到申请到足够的空间。 图片

2.导致不停的fgc的原因

如上文所讲,fgc有可能发生在你的每一行代码。如果fgc之后依然没有足够的空间,就会不停的fgc,直到申请到足够的空间。同时JVM会限制在抛出OutOfMemory错误之前在GC中花费的VM时间的比例。系统频繁FGC大致有五种情况:

内存泄漏 请求处理变慢导致同时申请内存的线程太多 metaspace 耗尽 常量池将堆区占满 堆外内存耗尽

正常情况下处理一个请求的时间是1ms,那同一时刻并行的请求数量仅为10。如果性能发生抖动,每个请求处理的时间增加到100ms,那同一时刻并行的请求数量就会增加到100个。每个线程在处理请求的时候都会new一些对象出来,长时间存活的线程会造成类似内存泄漏的效果,将系统的内存耗尽。同时fgc也会加剧系统性能的开销,使系统变得更慢,产生雪崩。

三、如何让系统fgc之后仍然能活下来

1.杜绝内存泄漏

内存泄漏造成系统瘫痪的频率很高,有些系统定时从数据库拉取配置信息缓存到集合中,但是set不小心写成了list,最终在新增元素的时候内存溢出了。养成良好的编程习惯,多关注些细节,就能避免很多未知的问题。

2.并发限制:防止系统被撑死

每台服务器都有并行处理请求的上限,不管请求处理的多快,超过上限之后就会被撑死,对高并发的请求做好并发数限制是保持系统稳定的必要条件。需要注意的是,有一些系统在拒绝过多的请求时,也会做一些降级逻辑,降级逻辑也是有性能开销的,同样需要做并发限制,如果降级的请求超过并发限制,将不进行降级逻辑直接抛出异常。我们可使用的限流组件有很多,推荐我们阿里自研的Sentinel 和 Netflix开源的Hystrix。

3.自适应限流:防止系统被摸死

我们需要自适应限流有两个原因:

a. 每台服务器所处的环境是不一样的

有些服务器和离线计算的vm混部在一起,有些部署在实体机,有些部署在新老型号的机器上,每台服务器能承受的qps并不完全一样。统一配置分布式系统中每台服务器限流阀值,要么发挥不出每台服务器应有的作用,要么在高qps的情况下一些比较慢的服务器宕机,所以用服务器作为限流粒度是最合适的。

b.设置了正确的限流阀值,也可能被摸死

当单机承受的QPS 6<sub>20倍于限流的流量时,拒绝一次请求的开销就无法忽略不记了。譬如春晚活动有些系统设置了正确的限流也被6</sub>20倍于限流的流量冲垮。这种死法称为被摸死。应对这种情况,我们可以做的是在受到6~20倍的大流量时,动态减少限流的阀值。比如系统最开始接受1000qps,5000的拒绝流量过来会把系统摸死,这个时候我们调整系统的阀值,限流设置到100,被摸死的阀值就可以高一些,这样就算有6000个请求进来,我们系统也可以保证活下来。 图片

4.异常流量监控:防止长尾请求拖垮系统

我们盯系统监控的时候通常会关注99分位的数据,但如果设置了合理的限流,系统依然被流量打挂,就要从那百分之一的长尾数据入手了。有些长尾数据对系统的影响会非常大。想象如果一个put请求传过来几十兆的数据,对java是极为不友好的,很有可能产生fgc,让请求变慢,导致一系列问题。

总之,磨刀不误砍柴工,当我们的系统因为fgc一次又一次重启的时候,不如花时间了解下系统产生性能问题的原因,将产生问题的那根针拔掉,晚上睡个安稳觉,白天更加充满活力的挖新坑。希望每个程序员手里都是一个稳定的系统。

参考资料:

jvm调优总结:

https://hllvm-group.iteye.com/group/wiki/?category_id=301

诺亚(Noah)自适应限流 稳定性利器 :

https://www.atatech.org/articles/149208

原文地址:https://blog.csdn.net/agonie201218/article/details/127958683?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168475008016800180689615%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=168475008016800180689615&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-16-127958683-null-null.142^v87^insert_down28,239^v2^insert_chatgpt&utm_term=java%E4%BC%98%E5%8C%96

本文章网址:https://www.sjxi.cn/detil/bf1697ce967c49b590ea8f9a14599b0e

打赏作者

本站为非盈利网站,如果您喜欢这篇文章,欢迎支持我们继续运营!

最新评论
当前未登陆哦
登陆后才可评论哦

湘ICP备2021009447号

×

(穷逼博主)在线接单

QQ: 1164453243

邮箱: abcdsjx@126.com

前端项目代做
前后端分离
Python 爬虫脚本
Java 后台开发
各种脚本编写
服务器搭建
个人博客搭建
Web 应用开发
Chrome 插件编写
Bug 修复