集合是java中提供的一种容器,可以用来存储多个数据。
略
Collection:单列集合类的根接口,用于存储一系列符合某种规则的元素,它有两个重要的子接口,分别是java.util.List和java.util.Set。其中,List的特点是元素有序、元素可重复 ; Set的特点是元素不可重复。List接口的主要实现类有java.util.ArrayList和java.util.LinkedList,Set接口的主要实现类有java.util.HashSet和java.util.LinkedHashSet。
从上面的描述可以看出JDK中提供了丰富的集合类库,为了便于初学者进行系统地学习,接下来通过一张图来描述集合常用类的继承体系
注意:这张图只是我们常用的集合有这些,不是说就只有这些集合。
小结:
集合本身是一个工具,它存放在java.util包中。在Collection接口定义着单列集合框架中最最共性的内容。
目标:
步骤:
讲解:
方法如下:
tips: 有关Collection中的方法可不止上面这些,其他方法可以自行查看API学习。
public class Demo02ListMethod {
public static void main(String[] args) {
method4();
}
public static void method4() {
//创建集合
List<String> list = new ArrayList<>();
//添加元素
list.add("jack");
list.add("rose");
list.add("tony");
//打印集合
System.out.println("替换前:" + list); //[jack, rose, tony]
//调用set方法,使用 tom 替换掉原来索引为1的元素
String str = list.set(1, "tom");
System.out.println("替换后:" + list); //[jack, tom, tony]
System.out.println("str:" + str); //rose
}
public static void method3() {
//创建集合
List<String> list = new ArrayList<>();
//添加元素
list.add("jack");
list.add("rose");
list.add("tony");
//打印集合
System.out.println("删除前:" + list); //[jack, rose, tony]
//调用remove方法,删除索引为1的元素
String str = list.remove(1);
System.out.println("删除后:" + list); //[jack, tony]
System.out.println("str:" + str); //rose
}
public static void method2() {
//创建集合
List<String> list = new ArrayList<>();
//添加元素
list.add("jack");
list.add("rose");
list.add("tony");
//调用get方法,根据索引获取元素
System.out.println(list.get(1));
}
public static void method1() {
//创建集合
List<String> list = new ArrayList<>();
//添加元素
list.add("jack");
list.add("rose");
list.add("tony");
//打印集合
System.out.println("list:" + list); //[jack, rose, tony]
//向索引为1的位置插入元素。 lucy
list.add(1, "lucy");
//打印集合
System.out.println("list:" + list); //[jack, lucy, rose, tony]
}
}
小结:
略
第二章 Iterator迭代器
2.1 Iterator接口
目标:
步骤:
讲解:
想要遍历Collection集合,那么就要获取该集合迭代器完成迭代操作,下面介绍一下获取迭代器的方法:
下面介绍一下迭代的概念:
Iterator接口的常用方法如下:
接下来我们通过案例学习如何使用Iterator迭代集合中元素:
public class IteratorDemo {
public static void main(String[] args) {
// 使用多态方式 创建对象
Collection<String> coll = new ArrayList<String>();
// 添加元素到集合
coll.add("串串星人");
coll.add("吐槽星人");
coll.add("汪星人");
//遍历
//使用迭代器 遍历 每个集合对象都有自己的迭代器
Iterator<String> it = coll.iterator();
// 泛型指的是 迭代出 元素的数据类型
while(it.hasNext()){ //判断是否有迭代元素
String s = it.next();//获取迭代出的元素
System.out.println(s);
}
}
}
tips:
小结:
2.2 迭代器的实现原理
目标:
步骤:
讲解:
我们在之前案例已经完成了Iterator遍历集合的整个过程。当遍历集合时,首先通过调用t集合的iterator()方法获得迭代器对象,然后使用hashNext()方法判断集合中是否存在下一个元素,如果存在,则调用next()方法将元素取出,否则说明已到达了集合末尾,停止遍历元素。
Iterator迭代器对象在遍历集合时,内部采用指针的方式来跟踪集合中的元素,为了让初学者能更好地理解迭代器的工作原理,接下来通过一个图例来演示Iterator对象迭代元素的过程:
在调用Iterator的next方法之前,迭代器的索引位于第一个元素之前,不指向任何元素,当第一次调用迭代器的next方法后,迭代器的索引会向后移动一位,指向第一个元素并将该元素返回,当再次调用next方法时,迭代器的索引会指向第二个元素并将该元素返回,依此类推,直到hasNext方法返回false,表示到达了集合的末尾,终止对元素的遍历。
小结:
略
2.3 增强for
目标:
步骤:
讲解:
增强for循环(也称for each循环)是JDK1.5以后出来的一个高级for循环,专门用来遍历数组和集合的。它的内部原理其实是个Iterator迭代器,所以在遍历的过程中,不能对集合中的元素进行增删操作。
格式:
for(元素的数据类型 变量 : Collection集合or数组){
//写操作代码
}
它用于遍历Collection和数组。通常只进行遍历元素,不要在遍历的过程中对集合元素进行增删操作。
代码演示
public class NBForDemo1 {
public static void main(String[] args) {
int[] arr = {3,5,6,87};
//使用增强for遍历数组
for(int a : arr){//a代表数组中的每个元素
System.out.println(a);
}
Collection<String> coll = new ArrayList<String>();
coll.add("小河神");
coll.add("老河神");
coll.add("神婆");
for(String s :coll){
System.out.println(s);
}
}
}
tips:
增强for循环必须有被遍历的目标,目标只能是Collection或者是数组;
增强for(迭代器)仅仅作为遍历操作出现,不能对集合进行增删元素操作,否则抛出ConcurrentModificationException并发修改异常
小结:
Collection是所有单列集合的根接口,如果要对单列集合进行遍历,通用的遍历方式是迭代器遍历或增强for遍历。
第三章 泛型
3.1 泛型概述
目标:
步骤:
讲解:
大家观察下面代码:
public class GenericDemo {
public static void main(String[] args) {
Collection coll = new ArrayList();
coll.add("abc");
coll.add("itcast");
coll.add(5);//由于集合没有做任何限定,任何类型都可以给其中存放
Iterator it = coll.iterator();
while(it.hasNext()){
//需要打印每个字符串的长度,就要把迭代出来的对象转成String类型
String str = (String) it.next();
System.out.println(str.length());
}
}
}
程序在运行时发生了问题java.lang.ClassCastException。 为什么会发生类型转换异常呢? 我们来分析下:由于集合中什么类型的元素都可以存储。导致取出时强转引发运行时 ClassCastException。 怎么来解决这个问题呢? Collection虽然可以存储各种对象,但实际上通常Collection只存储同一类型对象。例如都是存储字符串对象。因此在JDK5之后,新增了泛型(Generic)语法,让你在设计API时可以指定类或方法支持泛型,这样我们使用API的时候也变得更为简洁,并得到了编译时期的语法检查。
tips:一般在创建对象时,将未知的类型确定具体的类型。当没有指定泛型时,默认类型为Object类型。
小结:
3.2 使用泛型的好处
目标:
步骤:
讲解:
上一节只是讲解了泛型的引入,那么泛型带来了哪些好处呢?
通过我们如下代码体验一下:
public class GenericDemo2 {
public static void main(String[] args) {
Collection<String> list = new ArrayList<String>();
list.add("itheima");
list.add("itcast");
// list.add(666);//当集合明确类型后,存放类型不一致就会编译报错
// 集合已经明确具体存放的元素类型,那么在使用迭代器的时候,迭代器也同样会知道具体遍历元素类型
Iterator<String> it = list.iterator();
while(it.hasNext()){
String str = it.next();
//当使用Iterator<String>控制元素类型后,就不需要强转了。获取到的元素直接就是String类型
System.out.println(str.length());
}
}
}
tips:泛型是数据类型的一部分,我们将类名与泛型合并一起看做数据类型。
小结:
略
3.3 泛型的定义与使用
目标:
步骤:
讲解:
定义和使用含有泛型的类
定义格式:
修饰符 class 类名<代表泛型的变量> { }
例如,API中的ArrayList集合:
泛型在定义的时候不具体,使用的时候才变得具体。在使用的时候确定泛型的具体数据类型。
class ArrayList<E>{
public boolean add(E e){ }
public E get(int index){ }
....
}
使用泛型: 即什么时候确定泛型。
在创建对象的时候确定泛型
例如,ArrayList<String> list = new ArrayList<String>();
此时,变量E的值就是String类型,那么我们的类型就可以理解为:
class ArrayList<String>{
public boolean add(String e){ }
public String get(int index){ }
...
}
再例如,ArrayList<Integer> list = new ArrayList<Integer>();
此时,变量E的值就是Integer类型,那么我们的类型就可以理解为:
class ArrayList<Integer> {
public boolean add(Integer e) { }
public Integer get(int index) { }
...
}
定义和使用含有泛型的方法
定义格式:
修饰符 <代表泛型的变量> 返回值类型 方法名(参数){ }
例如,
public class MyGenericMethod {
public <MVP> void show(MVP mvp) {
System.out.println(mvp.getClass());
}
public <MVP> MVP show2(MVP mvp) {
return mvp;
}
}
调用方法时,确定泛型的类型
public class GenericMethodDemo {
public static void main(String[] args) {
// 创建对象
MyGenericMethod mm = new MyGenericMethod();
// 演示看方法提示
mm.show("aaa");
mm.show(123);
mm.show(12.45);
}
}
定义和使用含有泛型的接口
定义格式:
修饰符 interface接口名<代表泛型的变量> { }
例如,
public interface MyGenericInterface<E>{
public abstract void add(E e);
public abstract E getE();
}
使用格式:
1、定义类时确定泛型的类型
例如
public class MyImp1 implements MyGenericInterface<String> {
@Override
public void add(String e) {
// 省略...
}
@Override
public String getE() {
return null;
}
}
此时,泛型E的值就是String类型。
2、始终不确定泛型的类型,直到创建对象时,确定泛型的类型
例如
public class MyImp2<E> implements MyGenericInterface<E> {
@Override
public void add(E e) {
// 省略...
}
@Override
public E getE() {
return null;
}
}
确定泛型:
/*
* 使用
*/
public class GenericInterface {
public static void main(String[] args) {
MyImp2<String> my = new MyImp2<String>();
my.add("aa");
}
}
小结:泛型是一种未知的数据类型,定义在类上的泛型,使用类的时候会确定泛型的类型,定义在方法上的泛型,会在使用方法的时候确定泛型,定义在接口上的泛型,需要使用接口的时候确定泛型。
小结:
略
3.4 泛型通配符
目标:
步骤:
讲解:
通配符基本使用
泛型的通配符:不知道使用什么类型来接收的时候,此时可以使用?,?表示未知通配符。
此时只能接受数据,不能往该集合中存储数据。
举个例子大家理解使用即可:
public static void main(String[] args) {
Collection<Intger> list1 = new ArrayList<Integer>();
getElement(list1);
Collection<String> list2 = new ArrayList<String>();
getElement(list2);
}
public static void getElement(Collection<?> coll){}
//?代表可以接收任意类型
//泛型不存在继承关系 Collection<Object> list = new ArrayList<String>();这种是错误的。
通配符高级使用----受限泛型
之前设置泛型的时候,实际上是可以任意设置的,只要是类就可以设置。但是在JAVA的泛型中可以指定一个泛型的上限和下限。
泛型的上限:
泛型的下限:
比如:现已知Object类,String 类,Number类,Integer类,其中Number是Integer的父类
public static void main(String[] args) {
Collection<Integer> list1 = new ArrayList<Integer>();
Collection<String> list2 = new ArrayList<String>();
Collection<Number> list3 = new ArrayList<Number>();
Collection<Object> list4 = new ArrayList<Object>();
getElement1(list1);
getElement1(list2);//报错
getElement1(list3);
getElement1(list4);//报错
getElement2(list1);//报错
getElement2(list2);//报错
getElement2(list3);
getElement2(list4);
}
// 泛型的上限:此时的泛型?,必须是Number类型或者Number类型的子类
public static void getElement1(Collection<? extends Number> coll){}
// 泛型的下限:此时的泛型?,必须是Number类型或者Number类型的父类
public static void getElement2(Collection<? super Number> coll){}
?表示泛型通配符,如果要对?泛型通配符的取值范围进行限制,可以使用泛型限定
小结:
略
第四章 数据结构
4.1 数据结构介绍
目标:
步骤:
讲解:
数据结构 : 其实就是存储数据和表示数据的方式。数据结构内容比较多,细细的学起来也是相对费功夫的,不可能达到一蹴而就。我们将常见的数据结构:堆栈、队列、数组、链表和红黑树 这几种给大家介绍一下,作为数据结构的入门,了解一下它们的特点即可。
小结:
4.2 常见数据结构
目标:
步骤:
讲解:
栈
简单的说:采用该结构的集合,对元素的存取有如下的特点
这里两个名词需要注意:
队列
简单的说,采用该结构的集合,对元素的存取有如下的特点:
数组
简单的说,采用该结构的集合,对元素的存取有如下的特点:
链表
简单的说,采用该结构的集合,对元素的存取有如下的特点:
小结:
略
4.3. 树基本结构介绍
目标:
步骤:
讲解:
树具有的特点:
名词 含义
节点 指树中的一个元素
节点的度 节点拥有的子树的个数,二叉树的度不大于2
叶子节点 度为0的节点,也称之为终端结点
高度 叶子结点的高度为1,叶子结点的父节点高度为2,以此类推,根节点的高度最高
层 根节点在第一层,以此类推
父节点 若一个节点含有子节点,则这个节点称之为其子节点的父节点
子节点 子节点是父节点的下一层节点
兄弟节点 拥有共同父节点的节点互称为兄弟节点
二叉树
如果树中的每个节点的子节点的个数不超过2,那么该树就是一个二叉树。
二叉查找树
二叉查找树的特点:
案例演示(20,18,23,22,17,24,19)数据的存储过程;
遍历获取元素的时候可以按照"左中右"的顺序进行遍历;
注意:二叉查找树存在的问题:会出现"瘸子"的现象,影响查询效率
平衡二叉树
概述
为了避免出现"瘸子"的现象,减少树的高度,提高我们的搜素效率,又存在一种树的结构:"平衡二叉树"
规则:它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树
如下图所示:
如下图所示,左图是一棵平衡二叉树,根节点10,左右两子树的高度差是1,而右图,虽然根节点左右两子树高度差是0,但是右子树15的左右子树高度差为2,不符合定义,
所以右图不是一棵平衡二叉树。
旋转
在构建一棵平衡二叉树的过程中,当有新的节点要插入时,检查是否因插入后而破坏了树的平衡,如果是,则需要做旋转去改变树的结构。
左旋:
左旋就是将节点的右支往左拉,右子节点变成父节点,并把晋升之后多余的左子节点出让给降级节点的右子节点;
右旋:
将节点的左支往右拉,左子节点变成了父节点,并把晋升之后多余的右子节点出让给降级节点的左子节点
举个例子,像上图是否平衡二叉树的图里面,左图在没插入前"19"节点前,该树还是平衡二叉树,但是在插入"19"后,导致了"15"的左右子树失去了"平衡",
所以此时可以将"15"节点进行左旋,让"15"自身把节点出让给"17"作为"17"的左树,使得"17"节点左右子树平衡,而"15"节点没有子树,左右也平衡了。如下图,
由于在构建平衡二叉树的时候,当有新节点插入时,都会判断插入后时候平衡,这说明了插入新节点前,都是平衡的,也即高度差绝对值不会超过1。当新节点插入后,
有可能会有导致树不平衡,这时候就需要进行调整,而可能出现的情况就有4种,分别称作左左,左右,右左,右右。
左左
左左即为在原来平衡的二叉树上,在节点的左子树的左子树下,有新节点插入,导致节点的左右子树的高度差为2,如下即为"10"节点的左子树"7",的左子树"4",插入了节点"5"或"3"导致失衡。
左左调整其实比较简单,只需要对节点进行右旋即可,如下图,对节点"10"进行右旋,
左右
左右即为在原来平衡的二叉树上,在节点的左子树的右子树下,有新节点插入,导致节点的左右子树的高度差为2,如上即为"11"节点的左子树"7",的右子树"9",
插入了节点"10"或"8"导致失衡。
左右的调整就不能像左左一样,进行一次旋转就完成调整。我们不妨先试着让左右像左左一样对"11"节点进行右旋,结果图如下,右图的二叉树依然不平衡,而右图就是接下来要
讲的右左,即左右跟右左互为镜像,左左跟右右也互为镜像。
左右这种情况,进行一次旋转是不能满足我们的条件的,正确的调整方式是,将左右进行第一次旋转,将左右先调整成左左,然后再对左左进行调整,从而使得二叉树平衡。
即先对上图的节点"7"进行左旋,使得二叉树变成了左左,之后再对"11"节点进行右旋,此时二叉树就调整完成,如下图:
右左
右左即为在原来平衡的二叉树上,在节点的右子树的左子树下,有新节点插入,导致节点的左右子树的高度差为2,如上即为"11"节点的右子树"15",的左子树"13",
插入了节点"12"或"14"导致失衡。
前面也说了,右左跟左右其实互为镜像,所以调整过程就反过来,先对节点"15"进行右旋,使得二叉树变成右右,之后再对"11"节点进行左旋,此时二叉树就调整完成,如下图:
右右
右右即为在原来平衡的二叉树上,在节点的右子树的右子树下,有新节点插入,导致节点的左右子树的高度差为2,如下即为"11"节点的右子树"13",的左子树"15",插入了节点
"14"或"19"导致失衡。
右右只需对节点进行一次左旋即可调整平衡,如下图,对"11"节点进行左旋。
红黑树
概述
红黑树是一种自平衡的二叉查找树,是计算机科学中用到的一种数据结构,它是在1972年由Rudolf Bayer发明的,当时被称之为平衡二叉B树,后来,在1978年被
Leoj.Guibas和Robert Sedgewick修改为如今的"红黑树"。它是一种特殊的二叉查找树,红黑树的每一个节点上都有存储位表示节点的颜色,可以是红或者黑;
红黑树不是高度平衡的,它的平衡是通过"红黑树的特性"进行实现的;
红黑树的特性:
如下图所示就是一个
在进行元素插入的时候,和之前一样; 每一次插入完毕以后,使用黑色规则进行校验,如果不满足红黑规则,就需要通过变色,左旋和右旋来调整树,使其满足红黑规则;
小结:
略
第五章 List接口
我们掌握了Collection接口的使用后,再来看看Collection接口中的子类,他们都具备那些特性呢?
接下来,我们一起学习Collection中的常用几个子类(java.util.List集合、java.util.Set集合)。
5.1 List接口介绍
目标:
步骤:
讲解:
List接口的概述:
java.util.List接口继承自Collection接口,是单列集合的一个重要分支,习惯性地会将实现了List接口的对象称为List集合。在List集合中允许出现重复的元素,所有的元素是以一种线性方式进行存储的,在程序中可以通过索引来访问集合中的指定元素。另外,List集合还有一个特点就是元素有序,即元素的存入顺序和取出顺序一致。
看完API,我们总结一下:
List接口特点:
tips:我们在基础班的时候已经学习过List接口的子类java.util.ArrayList类,该类中的方法都是来自List中定义。
小结:
略
5.2 List接口中常用方法
目标:
步骤:
讲解:
List集合特有的方法:
List集合特有的方法都是跟索引相关,我们在基础班都学习过。
tips:我们之前学习Colletion体系的时候,发现List集合下有很多集合,它们的存储结构不同,这样就导致了这些集合它们有各自的特点,供我们在不同的环境下使用,那么常见的数据结构有哪些呢?在下一章我们来介绍:
小结:
略
5.3 List的子类
目标:
步骤:
讲解:
ArrayList集合
java.util.ArrayList集合数据存储的结构是数组结构。元素增删慢,查找快,由于日常开发中使用最多的功能为查询数据、遍历数据,所以ArrayList是最常用的集合。
许多程序员开发时非常随意地使用ArrayList完成任何需求,并不严谨,这种用法是不提倡的。
LinkedList集合
java.util.LinkedList集合数据存储的结构是链表结构。方便元素添加、删除的集合。
LinkedList是一个双向链表,那么双向链表是什么样子的呢,我们用个图了解下
实际开发中对一个集合元素的添加与删除经常涉及到首尾操作,而LinkedList提供了大量首尾操作的方法。这些方法我们作为了解即可:
LinkedList是List的子类,List中的方法LinkedList都是可以使用,这里就不做详细介绍,我们只需要了解LinkedList的特有方法即可。在开发时,LinkedList集合也可以作为堆栈,队列的结构使用。
public class Demo04LinkedList {
public static void main(String[] args) {
method4();
}
/*
* void push(E e): 压入。把元素添加到集合的第一个位置。
* E pop(): 弹出。把第一个元素删除,然后返回这个元素。
*/
public static void method4() {
//创建LinkedList对象
LinkedList<String> list = new LinkedList<>();
//添加元素
list.add("达尔文");
list.add("达芬奇");
list.add("达尔优");
System.out.println("list:" + list);
//调用push在集合的第一个位置添加元素
//list.push("爱迪生");
//System.out.println("list:" + list);//[爱迪生, 达尔文, 达芬奇, 达尔优]
//E pop(): 弹出。把第一个元素删除,然后返回这个元素。
String value = list.pop();
System.out.println("value:" + value);//达尔文
System.out.println("list:" + list);//[达芬奇,达尔优]
}
/*
* E removeFirst():删除第一个元素
* E removeLast():删除最后一个元素。
*/
public static void method3() {
//创建LinkedList对象
LinkedList<String> list = new LinkedList<>();
//添加元素
list.add("达尔文");
list.add("达芬奇");
list.add("达尔优");
//删除集合的第一个元素
// String value = list.removeFirst();
// System.out.println("value:" + value);//达尔文
// System.out.println("list:" + list);//[达芬奇,达尔优]
//删除最后一个元素
String value = list.removeLast();
System.out.println("value:" + value);//达尔优
System.out.println("list:" + list);//[达尔文, 达芬奇]
}
/*
* E getFirst(): 获取集合中的第一个元素
* E getLast(): 获取集合中的最后一个元素
*/
public static void method2() {
//创建LinkedList对象
LinkedList<String> list = new LinkedList<>();
//添加元素
list.add("达尔文");
list.add("达芬奇");
list.add("达尔优");
System.out.println("list:" + list);
//获取集合中的第一个元素
System.out.println("第一个元素是:" + list.getFirst());
//获取集合中的最后一个元素怒
System.out.println("最后一个元素是:" + list.getLast());
}
/*
* void addFirst(E e): 在集合的开头位置添加元素。
* void addLast(E e): 在集合的尾部添加元素。
*/
public static void method1() {
//创建LinkedList对象
LinkedList<String> list = new LinkedList<>();
//添加元素
list.add("达尔文");
list.add("达芬奇");
list.add("达尔优");
//打印这个集合
System.out.println("list:" + list);//[达尔文, 达芬奇, 达尔优]
//调用addFirst添加元素
list.addFirst("曹操");
System.out.println("list:" + list);//[曹操, 达尔文, 达芬奇, 达尔优]
//调用addLast方法添加元素
list.addLast("大乔");
System.out.println("list:" + list);//[曹操, 达尔文, 达芬奇, 达尔优, 大乔]
}
}
小结:
略
第六章 集合综合案例
目标:
步骤:
讲解:
6.1 案例介绍
按照斗地主的规则,完成洗牌发牌的动作。 具体规则:
使用54张牌打乱顺序,三个玩家参与游戏,三人交替摸牌,每人17张牌,最后三张留作底牌。
6.2 案例分析
6.3 代码实现
import java.util.ArrayList;
import java.util.Collections;
public class Poker {
public static void main(String[] args) {
/*
* 1: 准备牌操作
*/
//1.1 创建牌盒 将来存储牌面的
ArrayList<String> pokerBox = new ArrayList<String>();
//1.2 创建花色集合
ArrayList<String> colors = new ArrayList<String>();
//1.3 创建数字集合
ArrayList<String> numbers = new ArrayList<String>();
//1.4 分别给花色 以及 数字集合添加元素
colors.add("♥");
colors.add("♦");
colors.add("♠");
colors.add("♣");
for(int i = 2;i<=10;i++){
numbers.add(i+"");
}
numbers.add("J");
numbers.add("Q");
numbers.add("K");
numbers.add("A");
//1.5 创造牌 拼接牌操作
// 拿出每一个花色 然后跟每一个数字 进行结合 存储到牌盒中
for (String color : colors) {
//color每一个花色 guilian
//遍历数字集合
for(String number : numbers){
//结合
String card = color+number;
//存储到牌盒中
pokerBox.add(card);
}
}
//1.6大王小王
pokerBox.add("小☺");
pokerBox.add("大☠");
// System.out.println(pokerBox);
//洗牌 是不是就是将 牌盒中 牌的索引打乱
// Collections类 工具类 都是 静态方法
// shuffer方法
/*
* static void shuffle(List<?> list)
* 使用默认随机源对指定列表进行置换。
*/
//2:洗牌
Collections.shuffle(pokerBox);
//3 发牌
//3.1 创建 三个 玩家集合 创建一个底牌集合
ArrayList<String> player1 = new ArrayList<String>();
ArrayList<String> player2 = new ArrayList<String>();
ArrayList<String> player3 = new ArrayList<String>();
ArrayList<String> dipai = new ArrayList<String>();
//遍历 牌盒 必须知道索引
for(int i = 0;i<pokerBox.size();i++){
//获取 牌面
String card = pokerBox.get(i);
//留出三张底牌 存到 底牌集合中
if(i>=51){//存到底牌集合中
dipai.add(card);
} else {
//玩家1 %3 ==0
if(i%3==0){
player1.add(card);
}else if(i%3==1){//玩家2
player2.add(card);
}else{//玩家3
player3.add(card);
}
}
}
//看看
System.out.println("令狐冲:"+player1);
System.out.println("田伯光:"+player2);
System.out.println("绿竹翁:"+player3);
System.out.println("底牌:"+dipai);
}
}
小结:
略
本站为非盈利网站,如果您喜欢这篇文章,欢迎支持我们继续运营!
本站主要用于日常笔记的记录和生活日志。本站不保证所有内容信息可靠!(大多数文章属于搬运!)如有版权问题,请联系我立即删除:“abcdsjx@126.com”。
QQ: 1164453243
邮箱: abcdsjx@126.com